Mostrar registro simples

dc.creatorRocha, Thiago
dc.date.accessioned2016-02-19T12:58:45Z
dc.date.available2016-02-19T12:58:45Z
dc.date.issued2014-01-24
dc.identifier.citationAELOIZA, E. et al. A real time method to estimate electrolytic capacitor condition in pwm adjustable speed drives and uninterruptible power supplies. In: Power Electronics Specialists Conference, 2005. PESC ’05. IEEE 36th. [S.l.: s.n.], 2005. p. 2867–2872. AFROZE, S.; UDAYKUMAR, R.; NAIK, A. A systematic approach to grid connected pv system. In: IEEE Fifth Power India Conference, 2012. [S.l.: s.n.], 2012. p. 1–5. AHMED, K. et al. A modified stationary reference frame-based predictive current control with zero steady-state error for lcl coupled inverter-based distributed generation systems. IEEE Transactions on Industrial Electronics, v. 58, n. 4, p. 1359 –1370, april 2011. ISSN 0278-0046. AKAGI, H.; KANAZAWA, Y.; NABAE, A. Instantaneous reactive power compensators comprising switching devices without energy storage components. Industry Applications, IEEE Transactions on, IA-20, n. 3, p. 625–630, 1984. ISSN 0093-9994. ALAJMI, B. et al. Single-phase single-stage transformer- less grid connected pv system. Transactions on Power Electronics, IEEE, PP, n. 99, p. 1–1, 2013. ISSN 0885-8993. AMUDA, L. et al. Wide bandwidth single and three-phase pll structures for grid-tied pv systems. In: Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty- Eighth IEEE. [S.l.: s.n.], 2000. p. 1660–1663. ISSN 0160-8371. ANEEL. Atlas de Energia Elétrica no Brasil. [S.l.]: Brasília, 2008. ARRUDA, L.; SILVA, S.; FILHO, B. J. C. Pll structures for utility connected systems. In: Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE. [S.l.: s.n.], 2001. v. 4, p. 2655–2660 vol.4. ISSN 0197-2618. AZEVEDO, C. C. de. Controle Adaptativo Robusto para Filtros Ativos de Potência Paralelo. Tese (Doutorado) — UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE, 2011. BAO, X. et al. Simplified feedback linearization control of three-phase photovoltaic inverter with an lcl filter. IEEE Transactions on Power Electronics, v. 28, n. 6, p. 2739 –2752, june 2013. ISSN 0885-8993. BAZANELLA, A. S.; JR, J. M. G. da S. Sistemas de controle: princípios e métodos de projeto. [S.l.]: UFRGS, 2005. BLAABJERG, F. et al. Overview of control and grid synchronization for distributed power generation systems. IEEE Transactions on Industrial Electronics, v. 53, n. 5, p. 1398 –1409, oct. 2006. ISSN 0278-0046. BOSE, B. Global warming: Energy, environmental pollution, and the impact of power electronics. Industrial Electronics Magazine, IEEE, v. 4, n. 1, p. 6–17, 2010. ISSN 1932- 4529. BRAHAM, A. et al. Recent developments in fault detection and power loss estimation of electrolytic capacitors. Power Electronics, IEEE Transactions on, v. 25, n. 1, p. 33–43, 2010. ISSN 0885-8993. CAROLINO, S. F. Regulador Automático de Tensão Robusto Utilizando Técnicas de Controle Adaptativo. Tese (Dissertação de mestrado)—UFRN, Fevereiro 2013. CASTRUCCI P. B. L.; CURTI, R. Sistemas Não-Lineares. [S.l.: s.n.], 1981. CHA, H.; VU, T.-K.; KIM, J.-E. Design and control of proportional-resonant controller based photovoltaic power conditioning system. In: Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE. [S.l.: s.n.], 2009. p. 2198–2205. CLARKE, E. Circuit Analysis of AC Power Systems, Symetrical and Related Components. [S.l.]: Wiley, 1943. DASGUPTA, S.; SAHOO, S.; PANDA, S. A new control strategy for single phase series connected pv module inverter for grid voltage compensation. In: International Conference on Power Electronics and Drive Systems, 2009. PEDS 2009. [S.l.: s.n.], 2009. p. 1317–1322. DIXON, J. et al. Static var compensator and active power filter with power injection capability, using 27-level inverters and photovoltaic cells. In: International Symposium on Industrial Electronics, 2006 IEEE. [S.l.: s.n.], 2006. v. 2, p. 1106 –1111. ELÉTRICA, A. N. D. E. RESOLUÇÃO NORMATIVA NÚMERO 482. 2012. Disponível em: <http://www.aneel.gov.br/cedoc/ren2012482.pdf>. ESPI, J. et al. An adaptive robust predictive current control for three-phase grid-connected inverters. IEEE Transactions on Industrial Electronics, v. 58, n. 8, p. 3537 –3546, aug. 2011. ISSN 0278-0046. GAO, L. et al. Parallel-connected solar pv system to address partial and rapidly fluctuating shadow conditions. Transactions on Industrial Electronics, IEEE, v. 56, n. 5, p. 1548–1556, 2009. ISSN 0278-0046. GARDNER, F. M. Phase Lock Techniques. [S.l.]: Wiley, 1979. GASPERI, M. Life prediction modeling of bus capacitors in ac variable frequency drives. In: Pulp and Paper Industry TechnicalConference, 2005. Conference Record of 2005 Annual. [S.l.: s.n.], 2005. p. 141–146. GHODDAMI, H.; YAZDANI, A. A single-stage three-phase photovoltaic system with enhanced maximum power point tracking capability and increased power rating. Transactions on Power Delivery, IEEE, v. 26, n. 2, p. 1017–1029, 2011. ISSN 0885-8977. GONZALEZ-ESPIN, F. et al. An adaptive control system for three-phase photovoltaic inverters working in a polluted and variable frequency electric grid. IEEE Transactions on Power Electronics,, v. 27, n. 10, p. 4248 –4261, oct. 2012. ISSN 0885-8993. GONZALEZ-ESPIN, F. et al. An adaptive digital control technique for improved performance of grid connected inverters. IEEE Transactions on Industrial Informatics, v. 9, n. 2, p. 708 –718, may 2013. ISSN 1551-3203. HE, F. et al. Predictive dc voltage control for three-phase grid-connected pv inverters based on energy balance modeling. In: Power Electronics for Distributed Generation Systems (PEDG), 2010 2nd IEEE International Symposium on. [S.l.: s.n.], 2010. p. 516–519. HE, F. et al. A dc-link voltage control scheme for single-phase grid-connected pv inverters. In: Energy Conversion Congress and Exposition (ECCE), 2011 IEEE. [S.l.: s.n.], 2011. p. 3941 –3945. HERRAN, M. et al. Adaptive dead-time compensation for grid-connected pwm inverters of single-stage pv systems. IEEE Transactions on Power Electronics, v. 28, n. 6, p. 2816 –2825, june 2013. ISSN 0885-8993. HSIEH, G.-C.; HUNG, J. Phase-locked loop techniques. a survey. Industrial Electronics, IEEE Transactions on, v. 43, n. 6, p. 609–615, 1996. ISSN 0278-0046. HU, J. et al. Direct active and reactive power regulation of grid-connected dc/ac converters using slidingmode control approach. IEEE Transactions on Power Electronics, v. 26, n. 1, p. 210 –222, jan. 2011. ISSN 0885-8993. IEEE. Application Guide for IEEE Std 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems. 2009. IOANNOU, P. A.; SUN, J. Robust Adaptive Control. 2. ed. San Francisco: Prentice Hall, 1996. JACOBINA, C. et al. Digital current control of unbalanced three-phase power electronic systems. In: IEEE 31st Annual Power Electronics Specialists Conference, 2000. PESC 00. [S.l.: s.n.], 2000. v. 2, p. 767–772 vol.2. ISSN 0275-9306. KADRI, R.; GAUBERT, J.-P.; CHAMPENOIS, G. An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control. IEEE Transactions on Industrial Electronics, v. 58, n. 1, p. 66 –75, jan. 2011. ISSN 0278-0046. KOTSOPOULOS, A.; DUARTE, J.; HENDRIX, M. A. M. A predictive control scheme for dc voltage and ac current in grid-connected photovoltaic inverters with minimum dc link capacitance. In: The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001. IECON ’01. [S.l.: s.n.], 2001. v. 3, p. 1994–1999 vol.3. LO, Y.-K.; LEE, T.-P.; WU, K.-H. Grid-connected photovoltaic system with power factor correction. IEEE Transactions on Industrial Electronics, v. 55, n. 5, p. 2224 –2227, may 2008. ISSN 0278-0046. MAO, X.; AYYANAR, R. An adaptive controller for inverter-interfaced dgs connected to grids with a wide range of unknown impedances. In: Energy Conversion Congress and Exposition (ECCE), 2010 IEEE. [S.l.: s.n.], 2010. p. 2871 –2877. MARANGONI, F. Inversores monofásicos para conexão de sistemas Fotovoltaicos à rede. Tese (Doutorado)— Universidade Tecnológica Federal do Paraná, 2012. MASSING, J. et al. Adaptive current control for grid-connected converters with lcl filter. IEEE Transactions on Industrial Electronics, v. 59, n. 12, p. 4681 –4693, dec. 2012. ISSN 0278-0046. MEZA, C. et al. Considerations on the control design of dc-link based inverters in gridconnected photovoltaic systems. In: IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006. [S.l.: s.n.], 2006. p. 4 pp. –5070. MIRET, J. et al. Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags. Power Electronics, IEEE Transactions on, v. 27, n. 10, p. 4262 –4271, oct. 2012. ISSN 0885-8993. MOHAMED, Y.-R. Mitigation of dynamic, unbalanced, and harmonic voltage disturbances using grid-connected inverters with filter. IEEE Transactions on Industrial Electronics, v. 58, n. 9, p. 3914 –3924, sept. 2011. ISSN 0278-0046. MOHAN, N. first course on power electronics. [S.l.]: MNPERE, 2003. OHM, D.; OLEKSUK, R. On practical digital current regulator design for pm synchronous motor drives. In: Applied Power Electronics Conference and Exposition, 1998. APEC ’98. Conference Proceedings 1998., Thirteenth Annual. [S.l.: s.n.], 1998. v. 1, p. 56–63 vol.1. PARK, R. Two-reaction theory of synchronous machinesgeneralized method of analysispart 1. AIEE Trans., v. 48, p. 716˝U727, 1929. PARK, Y. et al. Asymmetric control of dc-link voltages for separate mppts in three-level inverters. IEEE Transactions on Power Electronics, v. 28, n. 6, p. 2760 –2769, june 2013. ISSN 0885-8993. PHIPPS, W.; HARRISON, M.; DUKE, R. Three-phase phase-locked loop control of a new generation power converter. In: Industrial Electronics and Applications, 2006 1ST IEEE Conference on. [S.l.: s.n.], 2006. p. 1–6. PROGRAMME, U. N. E. Renewable energy policy network for the 21st century. In: . [S.l.]: Renewables 2011 Global Status Report, 2011. p. 116. RODRIGUEZ, P. et al. Flexible active power control of distributed power generation systems during grid faults. IEEE Transactions on Industrial Electronics, v. 54, n. 5, p. 2583 –2592, oct. 2007. ISSN 0278-0046. SELVARAJ, J.; RAHIM, N.; KRISMADINATA, C. Digital pi current control for grid connected pv inverter. In: Conference on Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE. [S.l.: s.n.], 2008. p. 742–746. SINGH, M.; CHANDRA, A. Real-time implementation of anfis control for renewable interfacing inverter in 3p4w distribution network. IEEE Transactions on Industrial Electronics, v. 60, n. 1, p. 121 –128, jan. 2013. ISSN 0278-0046. SOARES, V.; VERDELHO, P.; MARQUES, G. An instantaneous active and reactive current component method for active filters. Transactions on Power Electronics, IEEE, v. 15, n. 4, p. 660–669, 2000. ISSN 0885-8993. SUBUDHI, B.; PRADHAN, R. A comparative study on maximum power point tracking techniques for photovoltaic power systems. Transactions on Sustainable Energy, IEEE, v. 4, n. 1, p. 89–98, 2013. ISSN 1949-3029. SUNG, N. gueon et al. Novel concept of a pv power generation systemadding the function of shunt active filter. In: Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES. [S.l.: s.n.], 2002. v. 3, p. 1658 – 1663 vol.3. TAKAGI, T.; SUGENO, M. Fuzzy identification of systems and its applications to modeling and control. Systems, Man and Cybernetics, IEEE Transactions on, SMC-15, n. 1, p. 116–132, 1985. ISSN 0018-9472. TEODORESCU, R. et al. A new control structure for grid-connected lcl pv inverters with zero steady-state error and selective harmonic compensation. In: Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC ’04. [S.l.: s.n.], 2004. v. 1, p. 580–586 Vol.1. TIMBUS, A. et al. Synchronization methods for three phase distributed power generation systems - an overview and evaluation. In: Power Electronics Specialists Conference, 2005. PESC ’05. IEEE 36th. [S.l.: s.n.], 2005. p. 2474–2481. TIMBUS, A. et al. Evaluation of current controllers for distributed power generation systems. IEEE Transactions on Power Electronics, v. 24, n. 3, p. 654 –664, march 2009. ISSN 0885-8993. TORABI, S. Fault location and classification in distribution systems using clark transformation and neural network. In: Conference on Electrical Power Distribution Networks (EPDC), 2011 16th. [S.l.: s.n.], 2011. p. 1–8. WANG, X. et al. Modeling and control of dual-stage high-power multifunctional pv system in dq0 coordinate. Industrial Electronics, IEEE Transactions on, v. 60, n. 4, p. 1556–1570, 2013. ISSN 0278-0046. YANG, Y.; BLAABJERG, F. Synchronization in single-phase grid-connected photovoltaic systems under grid faults. In: Power Electronics for Distributed Generation Systems (PEDG), 2012 3rd IEEE International Symposium on. [S.l.: s.n.], 2012. p. 476–482.pt_BR
dc.identifier.urihttp://memoria.ifrn.edu.br/handle/1044/758
dc.description.abstractActually there is a great concern regarding to the replacement of non-renewable resources by renewable sources in the electricity generation. This is due to the limitation of the traditional model and the growing demand of energy. With the development of power converters and effectiveness of control schemes, renewables have been integrated in the grid, as a distributed generation models (systems). Thus, this work presents a no-standard control strategy, with the use of a robust controller for interconnecting PV (Photovoltaic) systems to the grid phase. The compensation of power quality at the common coupling point (PCC) is performed by the proposed strategy. Traditional techniques use the harmonic detection. However, in this work the control of the current is done in an indirect way without the need of this detection. In the indirect strategy the DC (Direct Current) bus voltage control must be effective for avoiding voltage fluctuations. For that reason, the bandwidth of this controller is adjusted for reducing the distorcion on network current. To achieve this, the control strategy employs a dual mode DSM-PI (Dual-Sliding Mode-Proportional Integral) that behaves as a sliding mode controller SM-PI (Sliding Mode-Proportional Integral) during the transition and like a conventional PI (Proportional Integral) in the steady-state. The output phase current are aligned with the phase angle of the utility voltage vector obtained from the use of a PLL (Phase Locked Loop). This approach allows to regulate the power flow with the harmonic compensation and also regulates the power factor at the common coupling point. For controlling of the output phase currents a double sequence regulator are used with introdution of the internal model principle. Simulation and experimental results are presented to demonstrate the effectiveness of the proposed control system.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.languageporpt_BR
dc.publisherInstituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Nortept_BR
dc.rightsAcesso Abertopt_BR
dc.subjectFontes renováveis, controlador robusto, DSM-PI, compensação da qualidade de energia.pt_BR
dc.titleEstratégia de controle robusto para interconexão de sistemas PV trifásicos à rede elétricapt_BR
dc.typeDissertaçãopt_BR
dc.creator.ID06175975456pt_BR
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4383249H0pt_BR
dc.contributor.advisor1Ribeiro, Ricardo
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763032P8pt_BR
dc.contributor.referee1Ribeiro, Ricardo
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763032P8pt_BR
dc.contributor.referee2Costa, Flávio
dc.contributor.referee2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4772291Y7pt_BR
dc.contributor.referee3Oliveira, Alexandre
dc.contributor.referee3Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797578D4pt_BR
dc.contributor.referee4Limongi, Leonardo
dc.contributor.referee4Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4774197T6pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentJoão Câmarapt_BR
dc.publisher.programOutropt_BR
dc.publisher.programPPGEEC/CT/UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOpt_BR
dc.publisher.programOutropt_BR
dc.publisher.initialsIFRNpt_BR
dc.subject.cnpqEngenharias / Área: Engenharia Elétrica / Subárea: Eletrônica Industrial, Sistemas e Controles Eletrônicos / Especialidade: Automação Eletrônica de Processos Elétricos e Industriais.pt_BR
dc.subject.cnpqEngenharias / Área: Engenharia Elétrica / Subárea: Eletrônica Industrial, Sistemas e Controles Eletrônicos / Especialidade: Controle de Processos Eletrônicos, Retroalimentação.pt_BR
dc.subject.cnpqEngenharias / Área: Engenharia Elétrica / Subárea: Eletrônica Industrial, Sistemas e Controles Eletrônicos / Especialidade: Eletrônica Industrial.pt_BR
dc.description.resumoAtualmente há uma grande preocupação em relação a complementação das fontes não renováveis pelas fontes renováveis na geração de energia elétrica. Isto ocorre devido a limitação do modelo tradicional e da crescente demanda atual de energia. Com o desenvolvimento dos conversores de potência e a eficácia dos esquemas de controle, as fontes renováveis têm sido interligadas na rede elétrica, em um modelo de geração distribuída. Neste sentido, este trabalho apresenta uma estratégia de controle não convencional, com a utilização de um controlador robusto, para a interconexão de sistemas fotovoltaicos à rede elétrica trifásica. Nessa abordagem, a compensação da qualidade de energia no ponto de acoplamento comum (PAC) é também realizada pela estratégia proposta. As técnicas tradicionais utilizam esquemas para detecção de harmônicos, já neste trabalho o controle das correntes é feito de uma forma indireta sem a utilização desses esquemas. Na estratégia indireta é fundamental que o controle da tensão do barramento CC (Corrente Contínua) seja efetuado de uma forma que não haja grandes flutuações, e que a banda passante do controlador em regime permanente seja baixa para que as correntes da rede não tenham um alto THD (do inglês, Total Harmonic Distortion). Por este motivo é utilizado um controlador em modo dual DSM-PI (Proporcional Integral Dual em Modo Deslizante), que durante o transitório se comporta como um controlador em modo deslizante SM-PI (Proporcional Integral em Modo Deslizante), e em regime se comporta como um PI (Proporcional Integral) convencional. A corrente é alinhada ao ângulo de fase do vetor tensão da rede elétrica, obtido a partir do uso de um PLL (do inglês, Phase Locked Loop). Esta aproximação permite regular o fluxo de potência ativa, juntamente com a compensação dos harmônicos e também promover a correção do fator de potência no ponto de acoplamento comum. Para o controle das correntes é usado um controlador dupla sequencia, que utiliza o princípio do modelo interno da senoide para evitar transformações de referencial. Resultados de simulação e experimentais são apresentados para demonstrar a eficácia do sistema de controle proposto.pt_BR


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples